
1 A simple model of fishery dynamics

We now demonstrate the dynamics of a fishery by developing a simple dynamic bioeconomic model.
We will examine the behaviour of this model in two ways. The first way is to derive the equilibrium
conditions of the model, as well as its behaviour when it deviates from the equilibrium, algebraically.
The second way is to develop a simple numerical model in R.

R is a language and environment for statistics and mathematical modelling. It is used a lot in
statistics, biology, and the social sciences. For instance, some of the most widely used fisheries models
are written in R. Admittedly, there are many other languages out there that can do similar tasks as R,
such as Matlab, Stata, SAS, Scilab, C, Python, etc. Stata is most widely used in econometrics; Matlab is
very widely used in computational economics. Scilab and Python are open-source software. Compared
to these programmes, however, R has two important advantages. First, R is open source. Unlike Matlab,
Stata, and SAS, you can download, install, and run R, and all its add-ins, for free. Second, R has more
and better functionalities than other open-source software such as Scilab and Python.

1.1 Getting started with R

You can download R from http://www.r-project.org and install it on your own computer. When you
open R you see the following:

Figure 1: The R console

The one window that is open now is the console. This is your prime way of communicating with R, but
to write computational models you will need to use the so-called script editor. First, however, you need
to change the working directory of R to your directory of choice. You can check (and, if you prefer,
change) the working directory as follows:

1

Figure 2: Changing the working directory in R

You will see that the default working directory is ’My Documents’. If you want to keep ’My Documents’ as
your working directory, simply click ’OK’. If you prefer another existing directory, click on that directory
and click ’OK’. If you want to make a new directory (preferred: call it ’R practical’ or something like
that) then open the directory where you want this new directory and click ’Make New Folder’. Be aware
that R always starts with the same working directory so you always need to change it to your preferred
working directory when you start R!

1.2 Biological growth

Imagine a petri dish with one bacteria. As long as there are no external limitations, the number of
bacteria will show what is called exponential growth: every given length of time ∆t (say, 30 minutes),
the number of bacteria doubles. The first bacteria splits in two after ∆t; after another ∆t these two
have split, bringing the number to four; after another ∆t we have eight bacteria; and so on. In other
words, the growth rate of the bacteria colony is constant, whereas the absolute growth, i.e. the number
of bacteria added each ∆t, depends on the size of the colony:

Xt = Xt−1 + rXt−1 (1)

where r is the growth rate as a fraction of current biomass. Let’s plot this function in R. First we click
’File’ → ’New Script’:

2

Figure 3: Opening a new script file in R

In this file we first define the variables used:

Define parameter indicating number of years

numberOfYears <- 10

Define vector for stock size

stockSize <- vector(mode="numeric",length=numberOfYears)

Define stock growth parameter

stockGrowth <- 0.05

Let’s go through this code step by step. The first thing you see is the hash (”#”). R ignores everything
in a line starting with a hash. So why use it? Because the sentence ”Define parameter indicating number
of years” may not be understood by R, but all the better by you. The hash is the R way of inserting
comments. Comments are very helpful for yourself or other users to understand what the code is doing.
Would you still understand your code in, say, 5 years’ time if you did put in some explanation of what
it is doing? Therefore, one of the rules of good coding is Always add comments to explain what the code
is doing.

After the comment we see the name of the parameter, numberOfYears, with the sign ”<-” behind it.
”<-” is a typical R oddity. Here it simply says: ”assign the value 10 to numberOfYears”. More recent
versions of R also accept ”=” to assign values to parameters, but here we stick to the convention of using
”<-”.

Also note that the parameter for the number of years is fairly lengthy. ”T <- 10” would have worked
just as well. But again, would you be able to understand 5 years later what T stands for? Therefore,
another rule of good coding is Always use descriptive names.

Next we encounter another comment; in the line below the comment, the definition of a vector. This
is the vector of stock sizes X; it has as many entries as there are years t. The vector is created with a
function called vector, and this function contains two arguments:

• The type of data stored in the vector (mode);

• The length of the vector (length).

The mode of this vector is numeric, because we want to store numbers in it. Vectors can also contain
string data (i.e. words), but we will not use that function here. The length of the vector is the number
of years.

Lastly, we encounter another comment, and then the definition of the stock growth parameter
stockGrowth, which we assume to be equal to 0.05.

First save this script by clicking ’File’ → ’Save’. R will ask you to give a name to the file. Again,
it is a good idea to give a descriptive name to the file. More importantly, however, add the extension

3

”.r” to the name. It’s a bit silly, but R does not automatically add the extension ”.r” to file names of
scripts. So your file should be called ”expgrowth.r”, or ”bioeconmodel.r”, or something like that - just
don’t forget the ”.r” part.

Then we run the script. To run it, click ”Edit” → ”Run All”. R will show the script in the console:

Figure 4: R output after running the script file

R has now added two variables and a vector to its workspace. The workspace is the part of your
computer’s memory where R stores its data, like variables, vectors, matrices, and so on. If you want to
see the value of a variable, go to the R console, type in the name of the variable you want to see, and
press enter. The output on the console will look like this:

Figure 5: R output after checking the value of stockSize

Nevermind, for the time being, the ”[1]” before the actual values. You see that stockSize has indeed
10 entries: they are all zeros because we have not yet calculated the values of stockSize. To calculate
those values we first set the size of the stock in the first year to 10:

Initiate stock size in first year

stockSize [1] <- 10

4

The number between the square brackets indicates the entry number of the vector. We have now set the
first entry of the vector X to 10.

Now that we have set the value of the stock in the first year to 10 (X1 = 10) we can calculate the
value of the stock in the subsequent years according to Equation (1). We do this with the following code:

Start loop over years

for(iYear in 2: numberOfYears) {

stockSize[iYear] <- stockSize[iYear -1]+

stockGrowth*stockSize[iYear -1]

}

There is a lot happening in this code, so let’s go over it step by step. After the comment we find the for

command. This command is used to create a so-called loop: a piece of code that is repeated a number
of times. In this case we want to repeat a calculation for the years 2 to 10:

X2 = X1 + rX1

X3 = X2 + rX2

. . .

X10 = X9 + rX9

(2)

Note that we already have a value for X1, which is why count from 2 to 10 with the expression
2:numberOfYears. The colon ”:” is used to make a sequence in R. Typing, for instance, 2:10 cre-
ates a sequence of numbers from 2 to 10:

Figure 6: R output after making a sequence

So the expression ”iYear in 2:numberOfYears” tells R ”Go through a sequence from 2 to numberOfYears,
and for each value give iYear that value and do the following:”.

Next we encounter, between accolades (”{” and ”}”), the code that we want to repeat. In this case we
have an expression that is based on Equation (1): stockSize[iYear] <- stockSize[iYear-1]+stockGrowth*stockSize[iYear-1].

If we now run our script and check again the value of stockSize we get the following:

5

Figure 7: R output after running the exponential growth script

Wouldn’t you just love to show that in a plot? Add the following code to your script and run the script
again:

Print stock size

plot(stockSize)

2 4 6 8 10

10
11

12
13

14
15

Index

st
oc

kS
iz

e

Figure 8: R plot of exponential growth

Exercise 1
In your model, set r = 0.1, let it run for 100 years, and plot the result.

6

No stock, however, can grow this way indefinitely. Eventually it will reach the maximum size that can
be maintained in the ecosystem. We can easily modify Equation (1) to reflect the carrying capacity of
the ecosystem:

Xt = Xt−1 + rXt−1

(
1− Xt−1

m

)
(3)

where m denotes the carrying capacity of the ecosystem, or the largest biomass of the species it can
sustainably maintain. The growth function in Equation (3) is also called a Gordon-Schaefer growth
function after the biologists who developed it.

Exercise 2
Introduce the variable m in your model and give it the value 100. Also change the growth function
to the function in Equation (3) and run the script to plot this function. Don’t forget to give m a
descriptive variable name, and to include a comment line to explain what it is.

1.3 The impact of fishing

We now add fishing to the model:

Xt = Xt−1 + rXt−1

(
1− Xt−1

m

)
− Yt−1 (4)

where Yt denotes the amount of fish taken out of the fish stock.

Exercise 3
Assume a fixed harvest Y1 = Y2 = Ȳ = 2 and introduce this harvest into your model. What happens
if X1 = 10? Don’t forget to give Ȳ a descriptive variable name, and to include a comment line to
explain what it is.

You see in Exercise 3 that the fishing pressure causes stock size to become negative. This is of course
not realistic. It would be better to define the model such that if Ȳ > Xt, the stock in the following year
is zero (Xt+1 = 0). The simplest way to do this is to use the max function. A statement like max(5,10)

returns the value 10; likewise, the statement max(0,variable) returns the value of variable if that
variable is positive, but it returns the value 0 if variable is negative. So mathematically we want the
following growth function:

Xt+1 = max

{
0, Xt + rXt

(
1− Xt

m

)
− Yt

}
(5)

Exercise 4
Implement Equation 5 in your model and run the model. What happens if X1 = 10? And what if
X1 = 50?

You see in Exercise 4 that under these assumptions the outcome of the model depends on its starting
point: if we harvest 2 units every year from a small stock we deplete it, but harvesting the same amount
from a larger stock leads to a steady state where we can harvest this amount indefinitely.

Exercise 5
What is the difference in long-term stock if you start from X1 = 50 or X1 = 80?

In reality harvesting a given amount of fish will be easier from an abundant stock than from a stock that is
almost depleted. For this and other reasons fisheries economists use harvest functions where the harvest
depends on two variables, namely the stock size (Xt) and the fishing effort (Et). The latter needs some
explanation. Fishers use many inputs when they fish, such as labour, capital (like nets, fishing vessels,
and so on) and fuel. For simplicity we lump these inputs together in one variable: effort. Although this

7

is a gross simplification, fishing effort is often indeed measured in days-at-sea, or in horsepower-days,
where the number of days-at-sea is multiplied by the capacity of the vessel’s motor.

A common function that relates fishing effort and fish stock to fish harvest is the following:

Yt = qEtXt (6)

where q is called the catchability parameter. It is almost the same as the catch per unit of effort (CPUE),
except that CPUE varies with stock size, whereas q is assumed to be constant. Indeed, you can derive
CPUE from Equation (6) as follows:

CPUE =
Yt
Et

= qXt (7)

You can interpret q as the fraction of the stock that you catch with one unit of effort.

Exercise 6
Introduce the parameter q and the variable Ē in your R script. Assume q = 0.1.

As for catch, replace the (exogenous) variable Ȳ by a vector Y. Include Equation (6) in your
script to calculate Yt for each year. Run your script for a number of different values of Ē and
check what happens to Xt and Yt. Don’t forget to use descriptive variable names, and to include
comments.

To finally add some economics, let p be the price of fish and c the costs of fishing effort. We then define
the fishing revenues Bt, fishing costs Ct, and net resource rents Rt as follows:

Bt = pYt (8a)

Ct = cĒ (8b)

Rt = Bt − Ct (8c)

Exercise 7
Introduce p, c, Bt, Ct, and Rt in your script. Assume that p = 5 and c = 10. Calculate Bt, Ct, and
Rt for each year in your model. Run your script for a number of different values of Ē and check what
happens to Bt, Ct, and Rt. Don’t forget to use descriptive variable names, and to include comments.

Hint 1 : To add another graph to an existing plot, use the command points (for point
plots) or lines (for lines) instead of plot. Note that this only works when you have already made
a plot with plot.

Hint 2 : The dimensions of your plot depend on the data in the plot command. If your
data in points or lines exceeds those dimensions you can also plot those data first.

1.4 Dynamics of the fishing fleet

We now add the behaviour of the fishers to our model. A very simple but plausible assumption is the
following:

• If net resource rents are positive, new fishers enter the fishery;

• If net resource rents are negative, some of the current fishers leave the fishery.

A simple way to approach is to define an entry/exit parameter α that denotes the number of fishers
entering or leaving the fishery per unit of net resource rents. Hence we now have a dynamic system with
two state variables:

Xt+1 = max

{
0, Xt + rXt

(
1− Xt

m

)
− qEtXt

}
(9a)

Et+1 = max {0, Et + α (pEtXt − cEt)} (9b)

8

Exercise 8
We will now include the behaviour of the two state variables Xt and Et in Equation (9). Instead
of the fixed effort variable Ē, introduce a vector E. Assume α = 0.1; X1 = 100; and E1 = 0.2.
Calculate the fishing revenues of each year (Bt) and the fishing costs of each year (Ct), and plot
these in one graph. Explain the dynamics of this system.

Hint 1 : If you want to change the line type, use the option lty in either plot or lines:
lines(variable,lty=2), where 1 indicates a solid line (default); 2 indicates a dashed line; 3
indicates a dotted line; 4 indicates a dot-dashed line; 5 indicates a line with long dashes; and 6
indicates a two-dashed line.

Hint 2 : Feel free to change the number of years if you want to see the model converge.

9

