Fisheries objectives

Rolf Groeneveld

Fisheries objectives

- How much should we catch considering
- Stock growth
- Costs of fishing
- Discount rate
- Methods
- Graphical analysis
- Lagrange optimization
- Optimal control (Maximum Principle)
- WAGENINGENUR:

Graphical analysis

- But graphical analysis is quite limited
- Stock-dependent catch (search fish)
- Zero discount rate
- Algebraic analysis allows more general insights

The general problem

- Maximize the objective:
$\pi=\int_{0}^{T}(p Y(X, E)-C(Y, X, t)) e^{-\rho t} d t$
- With state equation:
- Stock-independent catch (schooling fish)
$\dot{X}=G(X)-Y(X, E)$
- Stock variable:
- X
- Control variable:
- Y ? E ?
I. WAGENingenura

In waseningenare

The control variable in the fishery problem

- The control variable can be either Y or E
- In implicit analyses (lecture slides)
- Y is the control variable
- Because it gives more insight
- In explicit analyses (numerical examples)
- E is the control variable
- Because it is easier

I. WAGENINGENLIR

Simplest case: schooling fish, no discounting

- Harvesting costs independent of stock size
- Control variable: Y (for didactic reasons)
- Zero discount rate
- We can therefore impose stability and use Lagrange:

In WAGENINGENURI

Simplest case: schooling fish, no discounting

- So either the species is useless...
- ...or marginal biological growth is zero
- Which corresponds to MSY

- WAGENINGEN FIR

Simplest case: schooling fish, no discounting

Net marginal
benefits of
stock size

Numerical example

- Consider a fishery with the following characteristics:
$p=10$
$Y=10 E$
$C=E$
$G=0.5 X\left(1-\frac{X}{40}\right)$
- Use E as the control variable (this is easier)
- What is the optimal fishing effort (E) ?
- What is the optimal stock size (X) ?
- WAGENINGENURI

Extension: search fish (no discounting)

- Harvesting costs depends on stock size
- Less abundant fish -> more difficult to catch
- Control variable: Y (it's an implicit model after all)
- Zero discount rate
- We can therefore impose stability and use Lagrange:
$L=p Y-C(Y, X)+\lambda(G(X)-Y) \Rightarrow\left(p-C_{Y}\right) G_{X} \underbrace{-C_{X}}=0$
Cost savings from larger stock

Simplest case: schooling fish, no discounting

Net marginal benefits of stock size

- WAGENINGENUR:

Effect of stock dependence of costs

- If costs are stock independent
- Fish at MSY
- If costs are stock dependent
- Fish at MEY
- Larger stock size to reduce harvesting costs

- WAGENINGENURI

Extension: discount rate

- Schooling fish: costs independent of stock size
- Control variable: Y (for didactic reasons)
- Positive discount rate
- Now we need to use optimal control
- Present value Hamiltonian:
$H=(p Y-C(Y)) e^{-\rho t}+\lambda(G(X)-Y)$
- Current value Hamiltonian:

$$
H^{c}=(p Y-C(Y))+\mu(G(X)-Y)
$$

1. wateningen mir

Numerical example

- Consider a fishery with the following characteristics:
$p=10$
$Y=10 E$
$C=E$
$G=0.5 X\left(1-\frac{X}{40}\right)$
$\rho=0.05$
- Take E as the control variable (it's easier)
- What is the optimal fishing effort (E) ?
- What is the optimal stock size (X) ?

WAGENINGENURE

Numerical example

- Consider a fishery with the following characteristics:
$p=1$
$Y=0.2 E X$
$C=4 E$
$G=2 X\left(1-\frac{X}{50}\right)$
- Take E as the control variable (this is easier)
- What is the optimal fishing effort (E) ?
- What is the optimal stock size (X) ?
- WAGENINGENUR:

Extension: discount rate

- For schooling fish the general rule is that marginal growth should equal stock:

$$
G_{X}=\rho
$$

- Interpretation: two bank accounts
- Financial: fixed interest rate
- Biological: interest rate depends on stock size
- Where to put your money?
- On the account with the highest interest rate
- WAEENINGENLITR

Alternative approach in discrete time

- Suppose you start with some pristine stock X
- Trade-off between two periods of time
- Period 1 (one year): Catch amount Y
- Period 2 (forever): Catch $G(X-Y)$

Period	1	2		Etc.
Year	1	2	3	Etc.
Stock in start of period	X	$X-Y+G(X-Y)$	$X-Y+G(X-Y)$	Etc.
Catch	Y	$G(X-Y)$	$G(X-Y)$	Etc.
Stock at end of period	$X-Y$	$X-Y$	$X-Y$	Etc.

- How large should Y be?
- WAGENINGENURE

Alternative approach in discrete time

- We face the following maximization problem:

$$
\max _{H} \pi=p Y+\frac{p G(X-Y)}{r}
$$

- In fact it is easier to solve like this:

$$
\max _{S} \pi=p(X-S)+\frac{p G(S)}{r}
$$

- Where S is called 'escapement'

Alternative approach in discrete time

Net Present
Value of
harvests (π)

II WAGENINGENDRI

Alternative approach in discrete time

Net Present

Value of
harvests (π)

HTAGENINGENDE:

Alternative approach in discrete time

Net Present
Value of
harvests (π)

$\square \overbrace{}^{\text {WAGENINGENIUR }}$

Alternative approach in discrete time

Take the first derivative with respect to escapement:

$$
\pi=p(X-S)+\frac{p G(S)}{r} \Rightarrow \frac{d \pi}{d S}=-p+\frac{d G / d S}{r} p
$$

- Increasing S by one fish has two effects:
- In the present you forgo 1 fish times its price
- In the future you earn the offspring of that fish times its price, annually
- In the optimum the two effects are equal:

$$
p=\frac{d G / d S}{r} p \Rightarrow \frac{d G}{d S}=r
$$

wagenimasn mia

Extension: search fish and discount rate

- Harvesting costs depends on stock size
- Less abundant fish -> more difficult to catch
- Control variable: Y (it's an implicit model after all)
- Positive discount rate
- Now we need to use optimal control
- Present value Hamiltonian:
$H=(p Y-C(Y, X)) e^{-\rho t}+\lambda(G(X)-Y)$
- Current value Hamiltonian:
$H^{c}=(p Y-C(Y, X))+\mu(G(X)-Y)$
I. WAGENINGENURE

Extension: search fish and discount rate

- Optimality condition:

$$
\underbrace{\left(p-C_{Y}\right) G_{X}-C_{X}}=\underbrace{\rho\left(p-C_{Y}\right)}
$$

Marginal benefits of stock size Marginal benefits of (i.e., of postponing yield) harvesting now

- WAGENINGENIUR

Extension: search fish and discount rate

Net marginal benefits of stock size

I WAGENINGENUR

Role of the discount rate

- At a zero interest rate you should fish at MSY or MEY
- The future is just as important as the present
- As interest rate increases
- The future becomes 'less important'
- More exploitation
- At extremely high interest rates
- It is more profitable to deplete the resource and put the money on the bank
- Equivalent to open-access fishing
\Rightarrow WAGENINGENDEI

Comparing fish stocks and bank accounts

- Market interest rate:
- Mostly between 0 and 20%
- Currently about 1%

Species	r (Source:fishbase.org)
Atlantic herring	$0.15-0.5$
Atlantic cod	$0.15-0.5$
Plaice	$0.05-0.15$
Monkfish	$0.05-0.15$
Orange roughy	<0.05

WAGENingen mer

