

What's so special about biological resources?

- Renewable
- Biological processes
- Growth
- Species interactions
- Interaction with abiotic factors
- WAGENINGEN FIT:

Program

- Today: Fisheries
- Good example of a biological resource
- Many problems with overexploitation
- Representative for other biological resources such as game
- Tomorrow
- R practical dynamic fisheries models
- Dynamic programming
- Thursday
- R practical dynamic programming
- Complex dynamics in ecosystems

In wageningenmer

Economic importance of marine resources

- Fish: $\$ 93.9$ bln in 2008 (FAO, 2010)
- A 16\% increase since 2000
- Aquaculture: $\$ 98.4$ bln in 2008 (FAO, 2010)
- A 73% (!) increase since 2000
- But not all is marine
- Tourism: Estimated at \$161 bln in 1995

> - But this is a very shaky figure

- Unregistered uses, especially in poor countries
- Timber, fuelwood, fish
$\square \overbrace{}^{\text {WAGENINGENIUR }}$

Employment in fisheries

- 44.9 mln people were involved in fisheries or aquaculture in 2008 - that is 0.6% of the total

wageningen mar

Employment in fisheries

- Employment in fisheries or aquaculture per 1000 people:

Economics of fisheries: Program

- This morning: `diagnosis'
- What is driving overfishing?
- How do fishers and fish interact?
- This afternoon: 'prognosis'
- How much should we fish?
\Rightarrow WAGENINGENURI

Overfishing in a nutshell

- Open entry/exit
- All rents dissipate as fishers enter the market

Dynamic analysis

-Equilibrium

- What are the steady states in the system?
- Dynamics
- What happens out of the equilibrium?
- We can catch the same amount with less effort
- Stocks will be larger ->
more existence values, less risk of stock collapse
Equilibrium analysis in a market

Dynamic analysis in a fisheries system

- State variables
- Size of the fish population
- Size of the fishing fleet
- Changes in states
- Net growth of the fish stock
- Entry/exit of fishers
- WAGENINGENUR:

Net growth of the fish population

- The change in stock over time (\dot{X}) is equal to:
$\dot{X}=G(X)-Y(X, E)$
- Where
- X denotes stock size
- G denotes biological growth
- Y denotes fish harvest
- E denotes fishing effort

- WAGEningentre

Net growth of the fish population

- Biological growth actually has two sources
- Recruitment of juveniles
- Growth of adults
- In the simplest model we lump this together and call it 'biomass':
$G(X)=r X\left(1-\frac{X}{K}\right)$
- where
- r is the 'intrinsic growth rate'
- K is the 'carrying capacity'

I_, wabeningenura

Fish growth

[^0]Net growth of the fleet

- Fishers enter when profits are being made:
$\dot{E}=\delta \pi$
- where π denotes profits:
$\pi=p Y(X, E)-c E$
- where fish harvest Y is:
$Y(X, E)=q E X$
- This harvest function assumes a search fish
- The alternative is a schooling fish
- Harvest independent of stock

I_wageningenme

Finding a steady state

- State equations
- Fish population: $\quad \dot{X}=r X\left(1-\frac{X}{K}\right)-q E X$
- Fishing fleet: $\dot{E}=\delta(p q E X-c E)$
- Steady-state conditions
- Fish population: $\dot{X}=0$
- Fishing fleet: $\quad \dot{E}=0$
\rightarrow WAGENINGENDIT

Steady-state condition for fishing fleet

Steady-state condition for fish stock

- Solve the steady-state condition:
- Solve the steady-state condition:
$\dot{X}=0 \Rightarrow r X\left(1-\frac{X}{K}\right)=q E X \Rightarrow X=K\left(1-\frac{q}{r} E\right)$

- waseningenme
- WAGENINGENURE

Steady-state in the entire system

- Both state variables are stable in the point where the lines cross:

-

AGENINGENLITRI

Steady states: stable and unstable

I WAGENINGENURE

Fishing fleet dynamics

- How does the fishing fleet develop?
- $X>\frac{c}{p q} \rightarrow$ fishing fleet grows
- $X<\frac{c}{p q} \rightarrow$ fishing fleet shrinks

- Wageningen mer

Fish stock dynamics

- How does the fish stock develop?
- $q E X>r X\left(1-\frac{X}{K}\right) \rightarrow$ fish stock declines
- $q E X<r X\left(1-\frac{X}{K}\right) \rightarrow$ fish stock grows

- WAGENINGENUR:

Dynamics in the entire system
Dynamics in the entire system

- If you start from a given combination of X and E :

IITMENINGENDRI

- WAEENINGENLITI

Dynamics in the entire system

- Typical development of stock and fleet over time:

WAGENINGENURE

Dynamics of open-access fishing

- We saw a system with two state variables
- Fish: biological growth
- Fishers: free entry/exit
- We identified the steady state
- This steady state is stable
- But is good? Is it bad?
- To answer these questions we need a different approach

Inabeningenura

Sustainable yield curve (graphical)

- Relation effort - steady state yield:

In WAGENINGENIUR

Sustainable yield curve (graphical)

- Consider one effort level $\left(E_{1}\right)$:

- WAGENINGENLUR

Sustainable yield curve (graphical)

- And another effort level $\left(E_{2}\right)$:

Sustainable yield curve (graphical)

- And another effort level $\left(E_{3}\right)$:

- WAGENINGENIURI

Sustainable yield curve (graphical)

- And another effort level $\left(E_{4}\right)$:

WAGENINGENIDR

Sustainable yield curve (graphical)

- This way we can trace the effort-yield curve:

- Notice the similarity in shape - don't confuse them!
\Rightarrow WAGENINGEN LITR

Sustainable yield curve (mathematical)

- Steady-state condition fish population:

$$
r X\left(1-\frac{X}{K}\right)=q E X \Rightarrow r-\frac{r}{K} X=q E
$$

- Yield function:

$$
Y=q E X \Rightarrow X=\frac{Y}{q E}
$$

- Substitute yield function in steady-state condition:
$r-\frac{r}{K} \frac{Y}{q E}=q E \Rightarrow Y=q E K-\frac{K}{r} q^{2} E^{2}$
- So yield is a parabolic function of effort:

I WAGENINGENITR

Sustainable revenue curve

- So far we derived sustainable yield:
$Y=q E K-\frac{K}{r} q^{2} E^{2}$
- Assume constant price to get sustainable revenue:
$R=p Y=p\left(q E K-\frac{K}{r} q^{2} E^{2}\right)$
- WAGENINGENLUR

Sustainable revenue curve

Cost curve

\Rightarrow WAGENINEENUR:

$$
\varlimsup_{E}
$$

Dynamics of entire system

Dynamics in the entire system

- Typical development of costs and revenues over time:

[^1]
Summary

- Overfishing
- Open access -> dissipation of rents
- Dynamics
- Phase-plane diagram suggests fluctuations towards equilibrium
- But how heavy they are depends on parameter values
- If this is inefficient, then what is efficient?
- This afternoon: fisheries objectives
- Tomorrow: modelling fisheries dynamics in R
I. wagenimenmbre

[^0]: 1. wageningender
[^1]: I WAgeningentur

