
15-2-2013

1

Dynamic programming

An alternative approach to dynamic optimisation

Rolf Groeneveld

Unknowns in natural resource 

management

� State variables

● How much fish is in the sea?

● How much oil is in the ground?

� Flow variables

● How fast will fish stocks grow?

● How much do fishers really catch?

● How much rain will fall?

Dealing with stochastic problems

� Backward induction

● Tedious but intuitive

� Dynamic programming

● Analytical: suitable for stochastic problems but hard

● Numerical: widely applied to stochastic problems

Learning outcomes

� After this lecture you are expected to be able to

● Draw a simple decision tree of a dynamic 
optimization problem

● Formulate the Bellman Equation of a given 
optimization problem in discrete time and in 
continuous time

● Write a simple dynamic programming model in R

● Explain the relation between dynamic programming 
and optimal control

Program

� How does risk change dynamic optimization?

� Backward induction

� Dynamic Programming

● Analytic

● Numerical

How does risk change dynamic 

optimization?

� Optimal Control

● Optimal extraction path:

� Risk

● You get ‘blown off the path’ all the time

● The plan does not tell you what to do if you stray

● So very soon your planned route is not optimal 
anymore

�∗ �



15-2-2013

2

How does risk change dynamic 

optimization?

� Adaptive management

● Make plans

● But be prepared to change them

� Dynamic Programming

● Optimal extraction path: �∗ �, � or even �∗ �

Program

� How does risk change dynamic optimization?

� Backward induction

� Dynamic Programming

● Analytic

● Numerical

A simple example

� Consider a tub of water used for irrigating crops

� State variable: water stock (�)
� Control variable: water consumption (�)
� Immediate utility: �
� State equation: ∆� � 	� 
 �

● Where � denotes net replenishment

� Discount rate � � 0.1
3 units

2 units

�
1 unit

Rain

�

Evaporation

Decision tree of water use

� Imagine this is a game against ‘nature’

● Player 1: Man (three moves)

● Player 2: Nature (two moves)

� Versions

● Nature always plays � � 0 (cake-eating problem)

● Nature always plays � � 1
● Nature plays � � 1 or � � 	1 (stochastic problem)

Decision tree for cake-eating problem

0

1

2

3
M M MN N

0 1 2

Time period

Decision maker

Backward induction

� Start at the last time period (� � �)
� How much would we consume if it was our last day on 

the farm?

Stock (�) Consumption (�) Utility ( �)
0 0 0

1 1 1

2 2 1.41

3 3 1.73



15-2-2013

3

Decision tree for cake-eating problem

0

1

2

3
M M MN N

0 1 2

Time period

Decision maker

0

1

1.41

1.73

Decision tree for cake-eating problem

0

1

2

3
M MN N

0 1

Time period

Decision maker

0

1

1.41

1.73

Backward induction

� Go to the year before last (� � � 	 1)
� We now face a trade-off between now and next period:

� For example, if � � 2:

max� � 
 11 
 � � 	 �

� � � 	 � � 
 11 
 � � 	 �
0 0 1.41 1.29

1 1 1 1.91

2 1.41 0 1.41

3 - - -

Backward induction

� So for each combination of stock size and consumption 
we can calculate the total utility and pick the best level:

� � � 0 � � 1 � � 2 � � 3
0 0

1 0.91 1

2 1.29 1.91 1.41

3 1.57 2.29 2.32 1.73

Decision tree for cake-eating problem

0

1

2

3
M MN

0 1

Time period

Decision maker

0

1

1.91

2.32

Decision tree for cake-eating problem

0

1

2

3
M N

0

Time period

Decision maker

0

1

1.91

2.32



15-2-2013

4

Backward induction

� For each combination of stock size and consumption we 
again calculate the total utility and pick the best level:

� � � 0 � � 1 � � 2 � � 3
0 0

1 0.91 1

2 1.74 1.91 1.41

3 2.11 2.74 2.32 1.73

Decision tree for cake-eating problem

0

1

2

3
M

0
0

1

1.91

2.74

Backward induction

� Optimal consumption path is a function of

● Stock size

● Number of remaining time periods

� This is also called a ‘policy function’

� As the time horizon goes to infinity the policy function 
depends on stock size only

� � � �, �

� � � �

Decision tree if � � 1

0

1

2

3
M M MN N

0 1 2

Time period

Decision maker

Decision tree if � � 1

0

1

2

3
M M MN N

0 1 2

Time period

Decision maker

Decision tree if � � 1

0

1

2

3
M M MN N

0 1 2

Time period

Decision maker

0

1

1.41

1.73



15-2-2013

5

Decision tree if � � 1

0

1

2

3
M MN N

0 1

Time period

Decision maker

1

1.41

1.73

1.73

Backward induction

� For each combination of stock size and consumption 
calculate the total utility and pick the best level:

� � � 0 � � 1 � � 2 � � 3
0 0.91

1 1.29 1.91

2 1.57 2.29 2.32

3 1.57 2.57 2.70 2.64

� Note that even if the stock is empty we get some 
discounted future utility

Decision tree if � � 1

0

1

2

3
M MN

0 1

Time period

Decision maker

0.91

1.91

2.32

2.70

Decision tree if � � 1

0

1

2

3
M N

0

Time period

Decision maker

1.91

2.32

2.70

2.70

Backward induction

� For each combination of stock size and consumption 
calculate the total utility and pick the best level:

� � � 0 � � 1 � � 2 � � 3
0 1.74

1 2.11 2.74

2 2.45 3.11 3.15

3 2.45 3.45 3.53 3.47

Decision tree if � � 1

0

1

2

3
M

0
1.74

2.74

3.53

3.15



15-2-2013

6

Decision tree for stochastic problem

0

1

2

3
M M MN N

0 1 2

Time period

Decision maker

Decision tree for stochastic problem

0

1

2

3
M MN N

0 1 2

Time period

Decision maker

0

1

1.41

1.73

Nature’s moves

� We don’t know �, but we do have a probability 
distribution

● 0.5 probability that � � 1
● 0.5 probability that � � 	1

� We can therefore calculate the expected value of next 
period’s value

� Value if � � 	1 Value if � � 1 Expected value

0 0 1 0.5

1 0 1.41 0.71

2 1 1.73 1.37

3 1.41 1.73 1.57

Decision tree for stochastic problem

0

1

2

3
M MN N

0 1

Time period

Decision maker

0.5

0.71

1.37

1.57

Backward induction

� We now face a trade-off between now and next period

� But now we have for the next period an expected value:

� For example, if � � 2:

max� � 
 11 
 � � � 	 �

� � � � 	 � � 
 11 
 �� � 	 �
0 0 1.37 1.24

1 1 0.71 1.64

2 1.41 0.5 1.87

3 - - -

Backward induction

� For each combination of stock size and consumption we 
can calculate the total utility and pick the best level:

� � � 0 � � 1 � � 2 � � 3
0 0.45

1 0.64 1.45

2 1.24 1.64 1.87

3 1.43 2.24 2.06 2.19



15-2-2013

7

Decision tree for stochastic problem

0

1

2

3
M MN

0 1

Time period

Decision maker

0.45

1.45

1.87

2.24

Nature’s moves

� Calculate the expected value of next period’s value

� Value if � � 	1 Value if � � 1 Expected value

0 0.45 1.45 0.95

1 0.45 1.87 1.16

2 1.45 2.24 1.85

3 1.87 2.24 2.06

Decision tree for stochastic problem

0

1

2

3
M N

0

Decision maker

0.95

1.16

1.85

2.06

Backward induction

� For each combination of stock size and consumption we 
can calculate the total utility and pick the best level:

� � � 0 � � 1 � � 2 � � 3
0 0.87

1 1.06 1.87

2 1.68 2.06 2.28

3 1.87 2.68 2.47 2.60

� Note that the utility has changed but not the optimal 
policy

Decision tree for stochastic problem

0

1

2

3
M

0
0.87

1.87

2.28

2.68

Stochastic problem

� Note the differences with the other two cases

� � � 0
● Expected value of � is equal

● But if � � 2 you use one unit more because future 
payoffs are uncertain

� � � 1
● Expected value of � is lower

● If � � 3 you save more for the future



15-2-2013

8

Program

� How does risk change dynamic optimization?

� Backward induction

� Dynamic Programming

● Analytic

● Numerical

Dynamic programming

� We just applied Bellman’s Principle of Optimality:

An optimal policy has the property that whatever the 
initial state and initial decision are, the remaining 
decisions must constitute an optimal policy with 
regard to the state resulting from the first decision.

Bellman's principle of optimality

� What this means is 
that your Tom-Tom 
never changes your 
route as you drive

Discrete-time Bellman Equation

� where

● �� �� is the value function

● � ∎ is the immediate utility function

�� �� � max�� � ��, �� 

1
1 
 � ���� ���� ��, ��

Dynamic programming example: fishery

� Objective:

� State equation:

� Bellman equation:

max��  
!�� 	 � ��, ��
1 
 � �

"

�#$

���� � �� 
 % �� 	 ��

�� �� � max�� !�� 	 � ��, �� 

1
1 
 � ���� �� 
 % �� 	 ��

Dynamic programming example: fishery

� Assume a steady state so that

● �� � ���� � �
● �� � ���� � �
● �� � ���� � �

� The Bellman equation then becomes:

� � � max� !� 	 � �, � 

1
1 
 � � � 
 % � 	 �



15-2-2013

9

Dynamic programming example: fishery

� � � max� !� 	 � �, � 

1
1 
 � � � 
 % � 	 �

Take first derivative to 
find condition for 
optimal harvest:

� LHS: marginal benefits of reducing stock by 1 unit

� RHS: marginal benefits of increasing stock by 1 unit

! 	 �� �
1
1 
 � �&

Dynamic programming example: fishery

�& � 	�& 

1
1 
 � �& 1 
 %&

� How do we find an expression for ��?
� Take first derivative of the entire Bellman equation:

! 	 �� �
1
1 
 � �&

� Is this allowed, despite the maximization of �?
� Yes, it’s called the Envelope Theorem

Dynamic programming example: fishery

! 	 �� �
1
%& 	 � �&⟹

� Isolate ��:

�& �
1 
 �
%& 	 � �&

� Substitute �� in the optimality condition:

� Compare Lecture 2:

! 	 �� %& 	 �& � ( ! 	 ��

! 	 �� %& 	 �& � � ! 	 ��

Stochastic Bellman Equation

� where

● � ∎ means ‘expected value of’

� We have some information on the uncertain process

● A stochastic variable �̃
● How future stocks �′ depend on �̃
● A probability distribution of �̃

� �� � max�� � ��, �� 

1
1 
 � � � ���� ��, ��

Continuous time Bellman equation

� If we assume that

● A time period has length Δ�
● Utility � in period � is equal to ,Δ�
● Control � in period � is equal to -Δ�
● Discrete-time discount rate � is equal to (Δ�

� Then we can write the Bellman equation like this:

� �, � � max. , �, -, � Δ� 

1

1 
 (Δ� � �
/, � 
 Δ�

� Where �’ is the value of � in next period

Continuous time Bellman equation

(� �, � � max. , �, -, � 1 
 (Δ� 

� �/, � 
 Δ� 	 � �/, �

Δ�

� It is possible to rewrite this to

� �, � � max. , �, -, � Δ� 

1

1 
 (Δ� � �
/, � 
 Δ�

� If you let Δ� go to zero this becomes

(� �, � � max. , �, -, � 

1�
1�



15-2-2013

10

Program

� How does risk change dynamic optimization?

� Backward induction

� Dynamic Programming

● Analytic

● Numerical

Numerical dynamic programming

� The real strength of dynamic programming lies in its 
numerical application

� Value Function Iteration (similar to backward induction)

1. Discretize state variables

2. Identify optimal control for each value

3. Update value function for the optimal control

4. Repeat steps 2-3 until convergence

Discretizing state variable

� In our water example we had discretized water stock to 
four possible levels:

2 �
0
1
2
3

Identify optimal control

� In the water example the control was defined by next 
year’s stock size

● 3 units now: consume 0, 1, 2, or 3 units

● 2 units now: consume 0, 1, or 2 units

● 1 unit now: consume 0 or 1 unit

● 0 units now: consume 0 units

� In a numerical model

● Try all control values and pick the best

● Use some built-in optimization procedure

Update value function

� Start with all zeros: 3 �
0
0
0
0

� So the first iteration features only the direct utility

� The second iteration features

● Direct utility plus

● Next period’s (expected) optimal value 
depending on this year’s control

� And so on

Convergence

� How many iterations do you need?

� Finite horizon problems

● Start at the transversality conditions

● Iterate (i.e. count back) for each time period

� Infinite horizon problems

● Initial conditions are further discounted with each 
iteration

● Policy function and value function should converge

● How much convergence is needed is up to you



15-2-2013

11

Computational Dynamic Programming

� Most suitable for dealing with uncertainty

� Drawbacks

● It takes a lot of programming

● Inaccuracies due to discretization

● Curse of dimensionality

Tomorrow

8:30 – 10:15 in PC621

Computer practical

Dynamic Programming

10.30 – 12.15

Nonlinearities and 
complexity in 
ecosystems


