

Program

- How does risk change dynamic optimization?
- Backward induction
- Dynamic Programming
 - Analytic
 - Numerical

WAGENINGEN UR For quality of life

How does risk change dynamic optimization?

Optimal Control

- Optimal extraction path: $Y^*(t)$
- Risk
 - You get 'blown off the path' all the time
 - The plan does not tell you what to do if you stray
 - So very soon your planned route is not optimal anymore

WAGENINGEN UR

- Adaptive management
 - Make plans

For quality of Me

- But be prepared to change them
- Dynamic Programming
 - Optimal extraction path: $Y^*(X, t)$ or even $Y^*(X)$

Program
How does risk change dynamic optimization?
Backward induction
Dynamic Programming

Analytic
Numerical

Ba	Backward induction									
■ S [•]	• Start at the last time period $(t = T)$									
How much would we consume if it was our last day on the farm?										
	Stock (X)	Consumption (C)	Utility (\sqrt{C})							
	0	0	0							
	1	1	1							
	2	2	1.41							
	3	3	1.73							
л										

Backw	/ard i	induc	tion			
. Fan as		- la incasti		ha alu ai		
calcula	te the	total u	utility a	nd picl	<pre>c and c the b</pre>	est level:
	X	C = 0	C = 1	C = 2	<i>C</i> = 3	
	0	1.74				
	1	2.11	2.74			
	2	2.45	3.11	3.15		
	3	2.45	3.45	3.53	3.47	
						-
	r quality of life	R				

Χ	Value if $z = -1$	Value if $z = 1$	Expected value
0	0.45	1.45	0.95
1	0.45	1.87	1.16
2	1.45	2.24	1.85
3	1.87	2.24	2.06
WAG			

Computational Dynamic Programming

- Most suitable for dealing with uncertainty
- Drawbacks
 - It takes a lot of programming
 - Inaccuracies due to discretization
 - Curse of dimensionality

For quality of life

